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Abstract— This paper presents ENISI Visual, an agent-
based simulator for modeling gut immunity to enteric
pathogens. Gastrointestinal systems are important for in-
taking food and other nutritions and gut immunity is an
important part of human immune system. ENISI Visual
provides quality visualizations and users can control initial
cell concentrations and the simulation speed, take snap-
shots, and record videos. The cells are represented with
different icons and the icons change colors as their states
change. Users can observe real-time immune responses, in-
cluding cell recruitment, cytokine and chemokine secretion
and dissipation, random or chemotactic movement, cell-
cell interactions, and state changes. The case study clearly
shows that users can use ENISI Visual to develop models
and run novel and insightful ir silico experiments.

I. INTRODUCTION

The gastrointestinal system of vertebrates includes
mouth, esophagus, stomach and intestines. The Gastroin-
testinal system digest food into nutrients and provide
energy and the building blocks required for growth and
maintenance of homeostasis. Gut immunity plays an
important role in protecting the gastrointestinal system
and the whole body from the invasion of gastroenteric
pathogens such as Helicobacter pylori, Escherichia coli,
and Clostridium difficile. The gut immune system ac-
counts for about 70% of the human immune systems.

ENISI, developed by MIEP, is an agent-based simu-
lator for modeling and simulating gastrointestinal (GI)
infections caused by immune responses to invading mi-
crobe [10], including commensal bacteria and pathogens.
To our best knowledge, ENISI is the first agent-based
simulator dedicated for gut immunity. Generally, agent-
based models are more complex than equation-based
models, requiring highly on computational resources.
The implementation of ENISI was based upon high-
performance computing [2] and it scaled up to 108 cells.

This paper presents ENISI Visual, a single machine
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Fig. 1. ENISI Visual simulating gut immunity: compartments, bacte-
ria, epithelial cells, immune cells, cytokine, chemokine, and immune
cell recruitment.

version of ENISI with quality visualizations. ENISI
Visual, adapted from our HPC version of ENISI [2],
is implemented based upon Repast Symphony [9], a
popular platform for agent-based modeling.

ENISI Visual provides quality visualizations for sim-
ulating gut immunity to enteric pathogens and is ca-
pable of simulating gut immunity, including pathogen
invasion, pro-inflammatory immune responses, pathogen
elimination, regulatory immune responses, and restoring
homeostasis. Users can build their own models using
ENISI Visual. ENISI Visual provides rich graphic user
interfaces. Users can control initial cell concentrations,
simulation speed, data and graphic outputs. Users can
take snapshots and record videos of the simulations.
ENISI Visual also simulates the secreting and diffusing
of cytokines and chemokines. Each grid has a value
indicating the concentrations of cytokines or chemokine
and the background colors of grids changes as the values
change. The visualizations can help modelers to test,



verify, and tune their models. The visualizations can
also help immunologists to test novel hypotheses and
design their biological experiments accordingly. Figure
1 provides a snapshot of ENISI Visual simulations.
The remaining of this paper is organized as follows.
We first review the literature and then present the sim-
ulator. After that we show a case study with simulation
results demonstrating its capabilities of novel insights
and discoveries. At the end, we conclude the paper.

II. RELATED WORK

Generally there are two categories of modeling tech-
nologies in computational biology. The first is equation-
based modeling, EBM, such as ordinary-differential
equation or ODE-based modeling. EBM has many nice
properties, including smaller set of parameters, less com-
putational complexity, and high capability of parameter
estimations. The Systems Biology Markup Language,
SBML, [6] has good support for ODE-based models and
COmplex PAthway SImulator (COPASI) [5] is a popular
and user friendly tool for ODE based modeling. How-
ever, EBM is not easy to represent individual behaviors
and locations such as the mucosal immune system of
the gut. The second category is agent-based modeling,
ABM. ABM represents each individual of the simulated
entities as an agent, or typically an object in software
implementations. ABM can better model individual en-
tities and their interactions. Based upon simple rules
of individual interactions, ABM can simulate extremely
complex system behaviors, which usually requires high
performance computing and does not have effective ways
for parameter estimations. This paper focuses on ABM
based immune modeling and simulations.

Macal et al. [7] published a tutorial on ABM including
model design and implementations. For ABM of immu-
nity, Bauer et al. [1] surveyed several ABM systems for
host-pathogen responses. Efroni et al. [3] discussed the
importance of animation and user interfaces in simulat-
ing reactive and complex systems.

ENISI Visual is built upon Repast Symphony [9],
an open source agent-based modeling and simulation
platform. It is implemented in Java language and is
highly portable. We have successfully run ENISI Visual
simulations on Windows, MAC, and Linux machines.
To our best knowledge, ENISI is the first Agent-based
modeling simulator for gut immunity. ENISI HPC im-
plementations [2] [10] have been published previously
by our team. This paper focuses on ENISI Visual that
provides high quality user interfaces and animations that
are very helpful for developing models and performing
in silico experiments of complex systems. BIS [4] is the
simulator closest to ENISI Visual in implementations.

However, it is not targeted for gut immunity. Mogilner
et al. [8] classified models using two criteria: focused or
broad, conceptual or mechanistic. In this paper, we use
ENISI Visual to develop a model that is broad, in the
sense that it can be used to model gut immune responses
to different pathogens as well as immune responses to
immune-mediated and allergic diseases, and conceptual,
in the sense that it can give you qualitative insights.
However, ENISI Visual can be used to develop models
that are focused and mechanistic, and give quantitative
predictions.

III. ENISI VISUAL, THE SIMULATOR

This section discusses the implementation details of
ENISI Visual, including 1) compartments and environ-
ment such as cytokines and chemokines; 2) agents of
different cell types, their states and movements; 3) the
user interface and animations.

A. Compartments and simulation environment

ENISI Visula has the following five compartments:
lumen, epithelium, lamina propia, draining lymph notes,
and blood.

o Lumen is the inner open space of a tubular organ

such as the stomach or intestine.

o Epithelium is the thin monolayer of epithelial cells
separating the lumen and lamina propria.

o Lamina propria (LP) is the connective tissue un-
derlying the epithelium where most of the immune
cells associated with the stomach mucosa reside.
Functionally the LP is an effector site.

e Gastric lymph nodes (GLNs) are secondary lym-
phoid organs draining the stomach and initial por-
tions of the duodenum. They belong to the intra-
abdominal lymph node cluster and are designated
as gastric and pancreaticoduodenal. The GLNs are
sites where immune responses are induced.

e Blood is the source for the monocytes such as
Macrophages, dendritic cells, and neutrophils.

Currently, the simulator is implemented as 2-
dimensional grid space. ENISI compartments are divided
into grids and each grid represents a unit of a square area.
We sometimes call the each grid cell as a sub-location.
Inside each grid, the cells are considered as neighbors.
Each grid shares the same environment, with same
concentrations of cytokines and chemokines. Figure 1
shows the three compartments of ENISI: lumen is on
its left side; Epithelium is the middle vertical layer;
and Lamina Propia is on the right side. The gastric
lymph node and blood are not shown in the visualization.
Both compartments can provide immune cells during
immune responses. The recruitment of immune cells is

584



represented by the influx of immune cells from the right
side of Lamina Propia.

In immune responses to pathogen invasions, the im-
mune cells release cytokines and chemokine that are
important for cell-cell communications, cell signaling,
and cell movement. ENISI uses a single value layer
of REPAST Symphony to represent both cytokines and
chemokines since they are usually secreted in parallel.
We use background colors to represent the cytokine or
chemokine gradient. For example in Figure 1, in contact-
ing with pathogenic bacteria, the epithelial cells become
pro-inflammatory and release cytokines and chemokines.
The cytokines and chemokines diffuse inside the Lamina
Propia and form the gradient. The diffusion of cytokines
and chemokines follows equation (1), where V,*¢!/ is the
value of the grid cell itself at step n. The values of C,
and Cy are evaporation constant and diffusion constant.

Vnself _ Ce*(V;illf“i’z:neighborscd*(Vneilghborfvsellf))

n— n—

D

B. Agents, cell Types, cell movement, and state transi-
tions

The cell types modeled in ENISI Visual and their
visualizations are represented in Table I.

TABLE I
AGENTS, STATES, AND LOGOS.

Cells State 1 State 2 State 3
Epithelial Normal Pro-inflammatory
Cells
Macrophages Immature M1
Dendritic Immature Effector Tolerogenic
Cells {4
@
Neutrophils Naive
B Cells Naive Plasma
A
@
T Cells Resting T Helper TReg
Bacteria Infectious Tolerogenic

1) State Transition: Each cell has different states or
phenotypes as we discussed above. For example, an
immature macrophage cell can become pro-inflammatory
state, i.e., M1, when in contact with pro-inflammatory T
helper cells. In each simulation cycle or step, each cell
checks its neighbors and its environment and determine
whether it keeps its state or changes to another state.
Different cel types are represented by different logos and
the logos change colors when the cells change cell types.

In general, with pro-inflammatory neighbor cells and
pro-inflammatory cytokines, a cell has high probability
to change its state to pro-inflammatory. State transitions
in this agent-based simulator are stochastic processes,
not deterministic.

]

Fig. 2. Chemotactic movement: a macrophage moves following the
chemokine gradient, the red arrow.

2) Cell Movement: Current ENISI has two types of
movement models: random and chemotactic. Random
movements are directionless and chemotactic movements
follow the chemokine gradient. The movement speed is
controllable and configurable.

C. User Interfaces, Snapshots and Animations

The interface allows users to control the initial cell
concentrations, simulation outputs, and simulation speed
etc. The users can also set batch simulation mode.
Simulation outputs can be the animations, the figures,
and output data files. The data can be further processed
through other data processing tools like Excel or Matlab.

In addition to controlling the simulation speed, user
can initiate, step, run, pause, and reset the simulation.
Users can take snapshots and record videos. Figure 3
shows the ENISI interface. The top line of buttons is
for controlling the simulations. The windows on the
left side can change simulation settings. The right two
windows are the upper one of figure and the lower one of
animations. The windows can be dragged and relocated.

IV. A CASE STUDY

In this section, we develop a model using ENISI
Visual. We target this model for gut immune responses
to invasions of gastroenteric pathogens. This model can
show how the inflammatory immune responses remove
the pathogens, how the lesions are forming, and how
regulatory immune responses restore the intestinal home-
ostasis.
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Fig. 3. ENISI Visual user interface.

A. Model: Rules and Settings

State Transition Rules: State transition rules com-
prise three types: contact dependent, environment depen-
dent, and time dependent. 1) If a cell changes its state
because of it is in contact with another cell, i.e., a neigh-
bor cell, this is contact dependent state transition rule.
2) If a cell changes its state because of its environment
such as a high concentration of a specific cytokine, this
rule is environment dependent. 3) If a cell changes its
state because of having stayed in a state for a certain
amount of time, this is called time dependent rule. State
transition rules can also be composite rules. For example,
a cell changes its state after having stayed in a specific
environment for longer than a certain amount of time.

o Epithelial Cells: 1) Normal state transits to infected
state with probability Ppp = 0.5 when in contact
with infectious bacteria; 2) Infected state transits to
normal state after time Tg; = 192.

o Dendritic cells: 1) Immature state transits to Ef-
fector state with probability Pppi = 0.54 when
in contact with Infectious Bacteria; 2) Immature
state transits to Tolerogenic state with probability
Ppps = 0.36 when in contact with Infectious
Bacteria; 3) Immature state transits to Effector state
with probability Ppci = 0.6 when the concentra-
tion of pro-inflammatory cytokines is larger than
Vbp = 5; 3) Immature state transits to Tolerogenic
state when the concentration of regulatory cytokines
is larger than Vppr = 5.

o Macrophages: 1) Undifferentiated state (MO) tran-
sits to M1 with probability Py;p1 = 0.9 when
in contact with Infectious Bacteria; 2) MO transits
to M2 with probability Py;pe = 0.1 when in
contact with Infectious Bacteria; 3) M1 transits to
M2 with probability Py;p; = 0.4 when in contact
with Tolerogenic dendritic cells or TReg cells; 4)
M2 transits to M1 with probability Py;pe = 0.4
when in contact with Effector dendritic cells or TH1

cells; 5) MO to M1 when the concentration of pro-
inflammatory cytokines is larger than Vi p = 7;
6) MO to M2 when the concentration of regulatory
cytokines is larger than Vg = 7.

e T Cells: 1) Resting T to THI with probability
Prpi1 = 0.9 when in contact with Effector den-
dritic cells; 2) Resting T to TReg with probability
Prps = 0.9 when in contact with Tolerogenic den-
dritic cells; 3) Resting T to TH1 when the concen-
tration of pro-inflammatory cytokines is larger than
Vrp = 5; 4) Resting T to TReg when regulatory
cytokines is larger than Vprp = 5.

Cytokines and Chemokine Secretion Rules: 1) Pro-
inflammatory epithelial cell releases Vy = 10 pro-
inflammatory chemicals into the grid it locates each sim-
ulation cycle; 2) Effector dendritic cell releases Vp1 = 2
pro-inflammatory chemicals into its grid each cycle; 3)
Tolerogenic dendritic cell releases Vpa = 2 regulatory
chemicals into its grid each cycle; 4) M1 Macrophage
releases Vjy1 = 2 pro-inflammatory chemicals into its
grid each cycle; 3) M2 Macrophage releases Vpy = 2
regulatory chemicals into its grid each cycle.

Cell Recruitment Rules: 1) When one epithelial cell
changes state into pro-inflammatory, number Ngp = 2
of Dendritic Cells are recruited into Laminia Propia. 2)
When one dendrtic cell changes state into Effector or
Tolerogenic, number Npr = 5 of resting T Cells and
number Npjs = 5 of undifferentiated Macrophages will
be recruited into the Laminia Propia from lymph nodes.
The initial locations of the newly recruited cells are in
the right side of Laminia Propia compartment.

Motion Rules: There are two types of motion rules,
random move and chemokine movement. In this model,
Epithelial cells do not move while Becteria move ran-
domly. Dendrtic cells, Macrophages, and T Cells fol-
lows chemotactic movement when chemokine gradient
is present; otherwise random movement.

Cross Compartment Rule: Bacteria in Lumen can
get through the epithelial layer into the Laminia Propia
with probability of Pgcr = 0.5 when the neighbor cell
is pro-inflammatory Epithelial cell.

B. Simulation Results

Figures 4 and 5 show the numbers of bacteria and
immune cells change along the simulation time. We
have performed four in silico experiments as shown
as the four scenarios in the figures. In the first ex-
periment, noChemo_noCyto, the chemotactic movement
and cytokine-induced state change are both disabled.
In the second experiment, noChemo_Cyto, chemotac-
tic movement is disabled. In the third experiment,
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Chemo_noCyto, cytokine-induced state change is dis-
abled. In the fourth experiment, Chemo_Cyto, both
chemotactic movement and cytokine induced state
change are enabled.

# Bacteria versus simulation cycles
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Fig. 4. Number of bacteria of four scenarios.
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Fig. 5. Number of immune cells of four scenarios.

From the comparisons, we can see that the chemo-
tactic movement and cytokine-induced cell state change
play critical roles in host-pathogen immune responses.
Chemotactic movement enables immune cells moving
quickly to the inflammation sites and the cytokine-
induced state change enables more efficient state
changes. With both enabled, the bacteria are eliminated
the fastest, the immune response is the shortest, and the
maximum number of immune cells is the smallest. With
both disabled, the bacteria are eliminated the slowest, the
immune response is the longest, and the maximum num-
ber of immune cells is the largest. When either feature
is disabled, the results are in between. Comparing the
two in-between scenarios, Chemo_noCyto gives quicker
initial immune response because the chemotactic move-
ment but last longer due to slow phenotype change, while
noChemo_cyto initiates immune response slower without
chemotactic movement but more effective in phenotype
change thus with shorter immune responses. Clearly

these insights we gain from novel in silico experiments
can potentially lead to novel biological experiments.

V. CONCLUSIONS

ENISI Visual is the first agent based simulator tar-
geting for gut immunity and providing quality visualiza-
tions. In this paper, we have discussed its design and
implementation. We have used a case study to show that
ENISI can perform insightful in silico experiments that
can lead to novel biological experiments and discoveries.
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